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DESIGN OF REAL TIME COMPUTERS UTILIZING COUNTING TECHNIQUES 

by George J. Moshos 

Lewis Research Center 
Cleveland, Oh io  

SUMMARY 

The design of a class of special purpose computing machines, which compute by 
counting, is systematically developed. The basis of the design philosophy is to limit the 
basic building elements to three fundamental units and to develop the method of synthesis 
such that these three building elements a re  represented as operational units. In particu- 
lar, the three basic building elements a re  (1) the binary rate multiplier, which is a means 
of scaling down a pulse stream to some specified fraction, (2) the counter, and (3) the 
anticoincidence circuit, which is a means of separating pulses arriving at the counter 
simultaneously. The computational errors ,  that is, rounding-off and truncation errors ,  
introduced into the machines when these elements a re  treated as operational units a r e  
identified. The method of synthesis is explicitly stated, and a wide variety of machines 
obtained directly from this synthesis a r e  presented. Finally, a series of machines is 
presented for interpolation and extrapolation of a function, which is available only as em- 
pirical data. 

INTRODUCTION 

Computers are usually divided into two broad categories, analog and digital. Analog 
computers represent variables as physical quantities. The solution of a problem in an 
analog computer is attained by constraining a physical model of the problem to be solved 
and measuring the variables. 
achieved by having functional components available (e. g. , adders, multipliers, integra- 
tors) and interconnecting them by means of a patchboard. The resulting interconnection 
is scaled to match the desired equation. On the other hand, digital computers represent 
variables as discrete quantities. The usual method of solution of a problem in a digital 
computer is attained by sequencing instructions through the fetch-execute cycle of its 

The ability to program a wide variety of problems is 



control unit. Another class of digital computers, known as incremental computers, com- 
bines the parallel functional simplicity and speed of analog computers with the ability of 
attaining computational precision, which is not dependent on precision of measurements. 
Such computers attain a speed advantage over conventional general purpose computers by 
transmitting and processing only partial words in a number of parallel arithmetic organs 
rather than the whole words needed by the fetch-execute cycle. Moreover, the digital 
nature of these computers permits the problem solution to be repeated exactly and there- 
fore does not possess the drift characteristic of analog computers. 
puter, which has commanded the most interest in the literature, is the digital differential 
analyzer, that is, DDA. This computer can be viewed as a digital analogy of an analog 
computer. 
solve a large spectrum of problems. When a computer need arises for a special purpose 
application, this versatility provided by general purpose computers is felt as an added 
cost factor. 

A class of incremental techniques, known in the industry as countup-countdown tech- 
niques, has been used in real time control. Data is represented in these techniques by a 
unitary code. For example, the number 28 is represented by 28 pulses. A function may 
be represented by counting the sequence of pulses in a forward-backward counter or  con- 
verting them directly into an analog quantity (e. g. , by a stepping motor) for analog pro- 
cessing. 
varying functions, countup-countdown techniques offer a simplicity of hardware that is 
economically more attractive than computing systems designed to handle a large spectrum 
of problems. 

The purpose of this study is to investigate countup-countdown techniques with the ob- 
jective of demonstrating that they can, in fact, be used to generate a wide variety of non- 
trivial functions. This will be done by displaying a circuit that will generate each func- 
tion. However, since the techniques on which this study is based a re  described in the 
literature only in an ad hoc manner (refs. 1 to 5), only specific circuits will be permitted 
as the basic building elements. In particular, the fundamental units to be permitted are 
(1) the binary rate multiplier (BRM), which is a means of scaling down a pulse stream to 
some specified fraction, (2) the counter, and (3) the anticoincidence circuit, which is a 
means of separating pulses arriving at the counter simultaneously. In order to strengthen 

the previous argument the explicit use of whole word 3-J)-  e adders and subtractors will be avoided completely. A 
succinct recapitulation of the purpose of this study is to 
develop and demonstrate systematically the versatility 
of techniques based on counting for solving sophisticated 
and practical special purpose computer design prob- 
lems. 

The incremental com- 

The usual design practice in each of these machines is to permit them to 

Consequently, when a real time application deals with continuous smoothly 

(a) NOR. (,,) OR. ,c) De,ay, 

(e) 3 3  RST flip-flop. (f) AND. 

Figure 1. - Basic logic elements. 
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The method of synthesis herein will be to describe the principal building elements as 
operational units and then proceed by operational techniques to show how to fabricate the 
various machines. In particular, a first-order difference equation can be represented by 
a counter, and approximate integration can be attained by using a counter in cascade with 
a binary rate multiplier. 

The principal design elements can be described in terms of the logic elements shown 
in figure 1. 
The parallel lines shown on one of the inputs in figure l ( f )  a r e  included to indicate that 
the AND circuit is intended to act as a pulse gate dependent on the level setting of the 
other line. 

The NOR element shown in figure l(a) may have various numbers of inputs. 

BlNA R Y RATE MULTl PLlE R 

A binary rate multiplier is a means of scaling down a pulse stream to some speci- 
fied fraction. A logic diagram of a BRM, which is built of standard logic elements, is 
shown in figure 2(a). This circuit is described in detail in several of the references (e. g. , 

Stage 1 2 . . .  k . . . n-1 n 

value 
Xk . .  . ‘n -1 xn flip-flop x1  x2 . . .  

Ax 

Y-2 
‘Level 
settings 

pu I se 

(a) Logic diagram. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
I n p u t 1  I I I I I I I I I I I I I I I I I 

Stage 1 I I I I I I I I I 
Stage 2 I I I I I 
Stage 3 I I 
Stage 4 I 

(bl Timing diagram. 

Figure 2. - Binary rate multiplier. 
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refs. 2 and 5); consequently, a brief description here will suffice. The input pulse stream 
is applied directly to the binary counter whose value is denoted by ~ ~ x ~ - ~  . . . x2x1. 
Each flip-flop of the counter is operated as a trigger. 
trigger two output pulses are produced; one pulse when the flip-flop makes a 0 'to 1 tran- 
sition called an Q! pulse and one when the flip-flop makes a 1 to 0 transition called a 
/3 pulse. The 0 pulse is used to trigger the successive stage of the counter. 
a r e  gated through AND gates and mixed through a NOR element to produce the desired 
fraction of the input pulses. This simple mixing technique may be used because the 
Q! pulses from the various stages are separated in time from each other. This timing 
factor is shown in figure 2(b). 

For every two input pulses to a 

The a! pulses 

The quantitative relation of a BRM may be expressed as 

AZ = yAx (1) 

where y is the binary number represented by the settings of the AND gates; that is, 
Y = .Y-lY-2 * . . Y - ~ ,  Ax  is the number of input pulses and Az is the number of output 
pulses. If y remains constant over a Ax interval of 2" pulses, where n is the num- 
ber of stages of the BRM, then this relation is exact. However, if  A x  is less than 2" 
pulses, this multiplicative relation is only approximate, where the difference between the 
actual output and that given by equation (1) is the rounding-off e r ror  in the multiplication. 
It can be demonstrated that this approximation can be improved by increasing the number 

TABLE I. - EXAMPLES OF p-SEQUENCES 

Pulse 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 - 

b o  stage 

10 
01 
10 
00 

p -Sequence 

rhree stage 

100 
010 
100 
00 1 
100 
010 
100 
000 

Four stage 

1000 
0 100 
1000 
0010 
1000 
0100 
1000 
000 1 
1000 
0100 
1000 
0010 
1000 
0 100 
1000 
0000 

- ~. 

of stages and that it varies with the starting con- 
ditions of the BRM counter. 

Because of the approximate nature of equa- 
tion (1) when Ax is less  than 2n pulses, the spe- 
cific output sequence will be calculated in demon- 
strating specific machines. 
tions, the pulse stream shown in figure 2(b) may 
be displayed in mathematical vector form. This 
will be called the p-sequence. Each position of 
the vector in this sequence represents the possible 
output at a particular pulse time from a stage of 
the BRM. The p-sequence for a two-, three-, and 
four-stage BRM is displayed in table I. 

The p-sequences given in the table assume 
that the BRM counter starting value is zero. If 
another starting value is used, its associated 
p-sequence can be easily obtained. Moreover, if 
an interval greater than 2n pulses is used, the 

For these calcula- 
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p-sequence can be obtained by repeating the p-sequence given in the table. 

p-sequence with the respective values of the level settings of the AND gates. This pro- 
cess is illustrated by two examples as follows: 

The sequence of output pulses may be calculated by multiplying bit by bit the 

Example A: F) 0 10 

100 
000 

Example B 

* 

* 

0101010 
1011 101 ( 11 1011 1 :)=I; 1 

0 

The first  matrix, in each of these examples, is the p-sequence. The next matrix repre- 
sents successive values of the gate settings. When these two matrices a re  multiplied to- 
gether by conventional matrix multiplication, the actual result of the BRM output is de- 
veloped along the diagonal of the resultant matrix. This restricted form of matrix mul- 
tiplication is notated by an asterisk and by displaying the result as a vector on the right 
side. The f i r s t  element of the resultant vector represents the output of the BRM after the 
first input pulse to the BRM'is applied; the second element of the resultant vector repre- 
sents the output of the BRM after the second input pulse is applied, etc. 

The expected output value of example A after the first  input pulse is given by equa- 
tion (1) and is equal to 3/8 of a pulse, since y = 3/8 and Ax = l. The expected output 
value after the second input pulse is the expected output value of the first input pulse plus 
the expected output value resulting from the second pulse. Therefore, the expected out- 
put value of example A is 35/8 pulses for the eight input pulses. As shown by actual com- 
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n 

Input 
pu I se 

End correcting l ine 

Figure 3. - Signed four-stage bidirectional counter. 

putation, however, the BRM yields zero output pulses. On the other hand, the expected 
value of example B by equation (1) is 21/8 pulses for the seven input pulses. The pre- 
ceding computation yields seven output pulses. Both of these examples a re  pathological 
cases in the use of the BRM. The approximate nature of equation (1) can ordinarily be 
expected to yield more realistic results. Some of these results a re  presented in this 
study. 

quantities. In particular, the level setting of the AND gates and the counter input pulses 
must be signed quantities, and the BRM is to yield a signed pulse output. If the output 
pulses a re  accumulated in a counter, the sign of the pulse will determine the direction of 
counting. If the output pulses a re  used to drive a stepping motor, the sign of the pulse 
will determine the direction the stepping motor is to turn. Throughout this discussion 
the signs of various quantities a r e  considered available through level logic. 
the output sign can be obtained from the input signs by an exclusive OR circuit. 

The method of synthesis to be presented necessitates that the BRM operate on signed 

Consequently, 

COUNTER 

The purpose of the counter in the machines that will be considered is twofold: (1) to 
accumulate the pulses arriving at the counter in order to display the total number of 
counts and (2) to set  the levels of the BRM's. In the first application, the counting se- 
quence can be any desired sequence for a terminal device. In many real time applica- 
tions the output pulses may not be accumulated directly but a r e  converted to an analog 
quantity for analog processing (e. g., by a stepping motor). In the second application, 
the counting sequence must be compatible with the BRM. This general requirement can 
be met by the circuit displayed in figure 3. 

A number is represented in this counter by magnitude plus sign. As had been stated 
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TABLE II. - DOWN -COUNTING 

SEQUENCE 

Input pulse I 

, +111 - +001 -0 -001 
~~~ 

-1 

+111 
+110 
+lo1 
+loo 
+011 
+o 10 
+oo 1 
+ooo 

+1 

-111 
-110 
-101 
- 100 
-011 
-010 
-001 
-000 

-111 - -001 + +001 

TABLE III. - UP-COUNTING 

SEQUENCE 

Input pulse 

-1 

-000 
-001 
-010 
-011 
- 100 
-101 
-110 
-111 

+1 

+ooo 
+oo 1 
+o 10 
+011 
+loo 
+lo1 
+110 
+111 

TABLE IV. - COUNTER SIGN 

Sign 
input 
pulse 

+ 
+ 
- 
- 

CONTROL 

Sign 
counter activated 

+ 

+ 
- 

earlier, the signs a re  represented by level logic. The counter counts down in magnitude 
when the input pulse and counter are opposite in sign and counts up in magnitude when the 
counter and input pulse have the same sign. The circuit is designed so that the a! pulses 
are used to count down and the p pulses used to count up. There are two representations 
of zero, that is, minus zero and positive zero. When the counter value is at +00 . . . 0 
and a -1 pulse arrives, the counter is set to -00 . . . 01. This end correction is ac- 
complished in three steps. The normal sequence first changes the counter value to 
+11 . . . 1. The magnitude is then corrected in the second step to +O . . . 01. Finally, 
the sign is changed to -00 . . . 01. The sign is changed last so that the p pulses genera- 
ted when the magnitude is corrected do not propagate to the successive stages of the 
counter. In a similar manner to that just given, the counter is set to 4 0  . . . 01 when 
the counter value is -00 . . . 0 and a +1 pulse arrives. The down-counting sequence for 
a three-stage counter is given in table II. 

The up-counting sequence utilizing the /3 pulses of the flip-flops is given in table III. 
Since the signs of both the pulse output of the BRM and counter value are to be pro- 

cessed by level logic, the activation of the up-down line is accomplished by an exclusive 
OR circuit. This is obvious from table IV. 

ANTICOINCIDENCE ClRCU IT 

Pulses arriving at a counter simultaneously must first be separated before they a re  
entered into the counter. 
cidence circuit. 
rives. Each stored pulse is then presented to the counter according to a fixed program. 

The circuit that accomplishes this task is called an anticoin- 
Fundamentally, this circuit necessitates storing each pulse as it ar- 

7 



Clock pulses 

C1 c 2  
Input 1 1 

Clock To counter 

Input 2 

Figure 4. - Anticoincidence circuit. 

4 
s1 A T %s2 T 

C1 c 2  
Clock pulses 

The circuit configuration that can accomplish this task for two inputs is shown in fig- 
ure 4. 

exists, i t  is stored in flip-flop 1. If a pulse from input 2 exists, i t  is stored in flip- 
flop 2. It will be noted that these two inputs can arrive simultaneously. Two pulses are 
emitted by the clock that are separated from each other. If flip-flop 1 had been set by 
input 1, it is reset by the clock pulse C1, which in turn generates an output pulse. If 
flip-flop 1 had not been set, no output pulse will appear in the output. Flip-flop 2 is re- 
set  and an output is similarly generated by clock pulse C2. Since clock pulses C1 and 
C2 are  separated, the corresponding output pulses are also separated. 

If either input arrives at the same moment as its associated clock pulse, this circuit 
may fai l .  However, it is usually the case that the inputs are time dependent on the clock, 
and natural time lags prevent them from arriving simultaneously. In any event, i t  is 
sufficient for this study just to state that this circuit can be expanded to adjust for such 
failures since the manner by which this can best be accomplished depends intimately on 
the particular application. 

fore they a re  presented to the anticoincidence circuit. When a pulse is presented to the 
counter, however, its sign must also be presented. This may be simply accomplished 
by shifting the sign level to a flip-flop by the separated clock pulses C1 and C2. This 
circuit is also shown in figure 4 where S's and sfs a re  the sign levels of the pulses and 
their complements, respectively. 

If more than two inputs arrive at the counter simultaneously, a need arises for a 
circuit other than a simple clock to separate the stored pulses. The design of such a 

8 

The operation of the circuit given in figure 4 is as follows: If a pulse from input 1 

Since the sign of a pulse is processed by level logic, the signs need not be stored be- 



TABLE V. - PULSES GENERATED BY SEVERAL COUNTING 

Counting 
sequence 

000 
00 1 
010 

100 
10 1 
110 
111 

oil 

Pulses 
Cenerated 

--a 
- aP 

aPP 

- aP 

PPP 

--a 

--a 

--a 

SEQUENCES 

Counting 
sequence 

000 
00 1 
011 
0 10 
110 
111 
i o  1 
100 

Pulses 
;enerated 

--a 
-a- 
- -P  
a-- 
--a 
-P- 
- -0 
P--  

Counting 
sequence 

000 
00 1 
011 
111 
110 
100 

Pulses 
Cenerated 

--a! 
-a- 
a-- 
- - P  
-8- 
P- - 

multiphase clock is outside the scope of this study. Nevertheless, it  is instructive to 
digress and indicate some techniques by which this can be accomplished. First, it is 
noted that a simple binary counting sequence such as the leftmost sequence shown in 
table V will serve this purpose. It will be noted, however, that, while this sequence can 
generate more than two steps, the a! and /3 pulses from the various flip-flops are not 
separated, so consequently cannot both be used. 

distance code. 
state at any step of the counting sequence. Consider the Gray code counting sequence 
given by the middle sequence in table V. This counting sequence can be used to separate 
as many as six inputs arriving at  the counter simultaneously; however, this requires the 
counter itself to go through eight steps. An example of a counting sequence that may be 
used to handle six inputs and yet go through only six steps in the counting sequence is 
given by the rightmost sequence in table V. 

All the sides of the f€ip-flops could be used if  the counting sequence utilized a unit 
Such a code would guarantee that not more than one flip-flop would change 

SCHEMATIC REPRESENTATION 

The three circuits described in this section are  the principle design elements; how- 
ever, in describing the machines promised in this report, these three circuits will be 
represented as operational units. The advantages to be gained by using operational units 
rather than these circuits are twofold. First, the method of synthesis can be more 
clearly presented. Secondly, a considerable hardware reduction can usually be realized 
when the composite machine is considered because these simplifications arise when all 
the features of these basic circuits are not required. A checklist of the features, which 
when removed would simplify the basic circuits, would include (1) sign control of BRM 
may not be required, (2) counter may not be required both to countup and countdown, 
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(a) BRM. (b) Scalar BRM. 

Input 

"-- output 

k 

(c) Counter. (d) Anticoincidence circuit .  

Figure 5. - Schematic diagrams of principle desiqn elements. 

(3) two BRM's may receive the same input 
pulse stream with the result that one BRM 
counter may be used with two sets of AND 
gates, and (4) the level setting of the BRM 
may be constant with the result that a 
scaling circuit (see ref. 5) rather than a 
BRM may be used. These three circuits 
are, however, sufficient as principal de- 
sign elements. 

The three principal design elements 
as operational units are presented in fig- 

ure  5. The BRM is represented by the schematic diagram shown in figure 5(a). The 
value y in this diagram is less  than 1 and is obtained from level logic. 
Ax and Az are the input and output pulse streams, respectively. The input-output rela- 
tion for this diagram is expressed by equation (1). Alternately, the BRM is represented 
by the schematic diagram shown in figure 5(b) when the value of y remains constant. In 
these cases the BRM may be replaced by a scaling circuit in the final design. Figure 5(c) 
presents the schematic diagram of the counter. The quantity Az is an input pulse stream 
and z is the output that may be used in level logic. When the counter is used to set the 
levels of the gated pulse generators of a BRM, a scale reduction of 2-" is implied by 
the connection. At times this scale reduction will be shown explicitly by the same dia- 
gram shown in figure 5(b). 
inserting it in the box, that is, 
iterative steps, the input-output relation may be expressed by the first-order difference 
equation: 

The quantities 

The initial conditions of a counter may be shown explicitly by 
If the counter value is considered to be a function of (0)' 

(k- 1) 
'(k) = '(k-1) + Az 

The value of z in equation (2) in terms of the initial condition of the counter is 
(k) 

k- 1 
'(k) = '(0) +- i = O  "(i) (3) 

Figure 5(d) represents the schematic diagram of an anticoincidence circuit. This circuit 
accepts multiple pulse inputs and produces a single pulse output. The design of this cir- 
cuit is such as to permit the input pulses to arrive simultaneously. At times, however, 
it will be convenient to use this schematic diagram for multiple pulse inputs even i f  the 
pulses a re  known to be separated. This usage, therefore, should permit a corresponding 
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simplification in the final design. Finally, the con- 
vention is adopted in each of these schematic dia- 
grams to use an arrowhead on a pulse logic input or 
output line and not to use an arrowhead on a level (a) Euler's integration. 

logic input or output line. 

using a counter in cascade with a BRM. 
figuration is shown in figure 6(a). 
the BRM is considered as a function of iterative 
steps, the output at iterative step k is Y ( ~ ) A x .  

Approximate integration can be attained by 
This con- 

~ ~ ~ ~ ~ p +  Y 

(b) Integration model. 

Figure 6. - Integrator. 

If the output of 

Entering this output directly into the counter yields the first-order difference equation: 

'(k) = '(k-1) i- y(k-l)Ax (4) 

represents the initial value of the z counter, equation (4) may be expressed as If z(o) 

k- 1 
'(k) = '(0) +E i = O  y(i)Ax 

This equation is recognized as Euler's (rectangular) integration. A model of this pro- 
cess, which is convenient for machine synthesis, is presented in figure 6(b). The devia- 
tion of the results given by the model from that given by equation (5) is the truncation 
error ,  

SYNTHESIS (DIFFERENTIAL EQUATION) 

The method of synthesis that will be applied in this section is to express the function 
to be generated as the solution to a differential equation. It has been demonstrated with 
analog techniques that a wide variety of functions can be generated by utilizing only inte- 
grating units and adders (e. g., refs. 6 and 7). For example, with a mechanical differ- 
ential analyzer, the basic units a re  a ball-disk integrator and a differential. In the syn- 
thesis of countup-countdown machines, the integrator model of figure 6 and the anticoin- 
cidence circuit, which permits the summation of two pulse streams, will serve as these 
operational units. 
recognized as entities only for purposes of synthesis, and that the fabrication of the ac- 
tual machines may permit circuit simplification, which may result in reductions of the 
hardwar e requirements . 

The first step in this synthesis is to express the function to be generated as a 

It should be reemphasized that the principal design elements were 
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differential equation such that the highest order derivative is isolated; that is, 

The independent variable in equation (6) is represented by a clock. The next step in the 
synthesis is to assume that a circuit has been designed to generate the highest order de- 
rivative. Integrators may then be used to reduce successively the order of the derivative 
according to the equation 

A circuit for generating the highest order derivative, whose existence had previously been 
assumed, may now be developed by the constraint defined by the right side of equation (6). 
The preceding process terminates the design of the basic configuration for generating the 
function. 

The schematic diagram of the machine just designed must then be scaled in order to 
(1) match exactly the defining equation and (2) accommodate the range of variables in a 
finite machine. In particular, the counters are used in the machine configuration to han- 
dle magnitudes that have a finite excursion based on the number of stages. Therefore, 
when a bidirectional counter is used, i ts  magnitude must be such that 

Since the level setting of a BRM must be less than 1, when a counter is used for this pur- 
pose i ts  scale will be reduced accordingly; that is, 

[Level setting of BRM] = 2-n [Counter value] (9) 

Finally, the scale of both sides of the defining equation, that is, equation (6), must be 
the same. 

steps is as follows: 

equation (6). 

This procedure may be reduced to a finite number of steps. A synopsis of these 

Step 1. - Isolate the highest order derivative in the differential equation as shown in 

Step 2. - Assume the highest order derivative has been generated in a counter, 

12 



Step 3. - Generate each successive lower derivative by using an integrating unit. 
Step 4. - Constrain the independent variable, the function, and i ts  derivatives ac- 

cording to the right side of equation (6) and connect i ts  output directly to the counter rep- 
resenting the highest order derivative. 

Step 5. - Assign arbitrary constants to the independent variable and i ts  highest order 
derivative. 

Step 6. - Write constraint equations at  each counter based on the maximum excursion 
and number of stages. 

Step 7. - Write  the constraint equation based on the defining equation. 
Step 8. - Calculate scale factors to satisfy the equations of steps 6 and 7. 
The application of this procedure is illustrated in the following sections in the design 

of specific countdown-countup machines. The first  two examples will be machines for 
generating the exponential function and for generating the sine-cosine functions. These 
two machines will be illustrated in detail. 

EXPONENTIAL FUNCTION 

The differential equation 

y' = y, y(0) = 1 (10) 

whose solution is - dy = y' dx 

(11) 
X y = e  

will be used to design the circuit for gen- 
erating the exponential function. The 1" 

I 

(a) Basic design. 

(b) Scaled design. 

Figure 7. - Exponential function generator. 

design solution for this circuit is presen- 
ted in figure 7. The detailed procedure 
for this synthesis is as follows: 

equation given by equation (10) is in the 
desired form. 

Step 1. - The defining differential 

Step 2. - Assume a circuit has been 
designed to generate the highest order de- 
rivative. 
labeled y' in figure 7(a). 

by integrating y'. 

This is represented by the line 

Step 3. - The function y is generated 
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Step 4. - Since by equation (10) the assumed highest order derivative y' is equal 
to y, then y is directly connected to the line y'. This completes the basic circuit shown 
in figure 7(a). 

The arbitrary constants A and B a re  assigned as scale factors to the independent var- 
iable and the highest order derivative, respectively. The interpretation of A is "A 
counts per unit of x. " The interpretation of B is "B counts per unit of y'. '' Note 
that the scale factor of the counter in figure 7(b) is reduced by 2-n when it is used to 
set the levels of the BRM. If the value of the counter is By' counts, the level setting of 
the BRM is 2'nBy1. 

Step 5. - This is the first step in the design of the scaled circuit shown in figure 7(b). 

Step 6. - Constraint equations a re  written for the counter; that is, 

Step 7. - The mechanization of the defining equation is justified by the following con- 
straint equation: 

By' = 2-nABy 

Step 8. - From the equation of step 7 it can be calculated that 

A = 9 counts/unit of x 

The calculation of B depends on the maximum excursion of the variable y accord- 
ing to the equation 

This essentially completes the schematic design of the circuit for generating ex. 
Some choices for A and B based on the equation of 

step 8 a re  given in table VI. This series of machines has 
been simulated on a computer in order to illustrate some 

TABLE VI. - SCALE FACTORS 

AND INITIAL ComlT1oNS OF 

EXPONENTIAL MACHINE 

14 

Initial counter 
value 

10 
20 
40 
80 

typical results that can be obtained by machines of this type. 
These results a re  presented in figure 8. The difference 
equation for the exponential machine may be obtained di- 
rectly from figure 9, which is identical to the circuit shown 
in figure 7 but labeled according to Euler's integration. The 
scale factor associated with the counter is "B pulses per 
unit of y. '' When the counter is at iterative step k-1, its 



5 

I 200 

Figure 8. - Exponential machine output. 

During this iteration, 2" Ax pulses arrive at the BRM counter, and (k- 1)' value is at y 
the BRM puts out By 
form the counter value for iterative step k. Mathematically the value of the counter may 
be expressed by the difference equation 

Ax pulses. These output pulses a re  added to the counter to 
(k- 1) 

BY(k) = By(k- 1) + By(k-l) Ax (1 2) 

If each clock pulse is taken as an iterative step, Ax = 2-" and equation (12) may be re- 
written as 

Solving equation (13) in terms of the initial 
conditions of y (i. e., y(0) = 1) yields 

I I 

Figure 9. - Approximate exponential generator. 

This solution is shown in figure 8. 
The difference between the differential- 

equation solution and the difference-equation 
solution is the truncation error  of the pro- 

15 



40 

Ax 

(c) Starting value, 3. (d) Starting value, 4. 

Figure 10. -Output of six-stage exponential machine. 

6oM!Mi 

BRM counter 

IpiJjM 

. 

DM1 

Figure 11. -Logic diagram of exponential machine, 

cess. The difference between the actual output and the difference-equation solution is the 
error  due to round off. The results shown in figure 8 illustrate that the round-off error  
is dependent on the number of stages of the BRM. Figure 10 shows this error  for the six- 
stage BRM for a number of different starting values of the BRM counter. This figure il- 
lustrates that the round-off e r ror  is dependent on the starting value of the BRM counter. 
By these simple means, measurable improvement can usually be attained in the total error. 

Finally, consider a configuration of this machine built out of standard logic elements 
(see ref. 5) for generating the function. This is shown for a four-stage system in figure 11. 

16 



Lj (a) Schematic design. t 
(b) Logical design. 

Figure 12. - General exponential function machine. 

Since the exponential function is a monotonically increasing function, the counter shown in 
this circuit is a simple forward counter. 

general exponential function 
The synthesis and analysis of a countup-countdown machine for the generation of the 

CYX 
Y = Yoe 

from the differential equation 

Y' = CYY, Y(0) = Y o  (16) 

follows with only minor modification the design of the machine for generating ex. 
schematic diagram for this machine is given in figure 12(a), and the logical design is 
given in figure 12(b). 

The 

SINE-COSINE GENERATOR 

The differential equation 

y" = -y, y'(0) = 0, y(0) = 1 (17) 

17 



7 Y' 

I cos x 

(a) Basic design. 

I 
(b) Scaled design. 

Figure 13. - Sine-cosine generator. 

is used to design the sine-cosine generator. The basic schematic diagram and the scaled 
schematic diagram are shown in figures 13(a) and (b), respectively, and may be devel- 
oped systematically as follows: 

Step 1. - The defining differential equation given by equation (17) is in the desired 
form. 

Step 2. - Assume that a circuit has been designed to generate the highest order de- 
rivative. This is represented by the line labeled y" in figure 13(a). 

Step 3. - The function y' is generated by integrating ytr, and the function y is 
generated by integrating y'. 

Step 4. - Since y enters the differential equationnegatively, the pulses arriving at 
the y counter have a sign change with the result that the ohtput of the counter is -y cor- 
responding to y t t  (see defining equation). 

Step 5. - Arbitrary constants A and B are assigned as scale factors to the inde- 
pendent variable and the highest order derivative, respectively. The interpretation of A 
is "A counts per unit of xrf (i. e., per radian). The interpretation of B is "B counts 

18 



TABLE VII. - SCALE FACTORS 

ANI) INITIAL CONDITIONS FOR 

SINE-COSINE MACHINE 
- 

n 

~ 

3 
4 
5 
6 

~ 

~ 

A 

8 
16 
32 
64 

- 

B 

- 

4 
8 
16 
32 
- 

Counter 

Sine Cosine 

-4 
-8 

- 16 
-32 

per unit of y. '( If y' counter is set  to 0 and y counter 
is set to -1 (note that this corresponds to the cosine be- 
ing +l), y' will countup to generate the sine and y will 
countdown to generate the cosine. 

Step 6. - Constraint equations are written for each 
counter; that is, 

2-2nA2B(y),, 5 2" - 1 

Step 7. - The constraint equation is written to justify the defining equation 

Step 8. - From the equations in steps 6 and 7, the scale factors can be chosen: 

A = P ,  B l y l m m < 2 " - 1  

Some choices for A and B are given in table VII based on the equation of step 8. 
This ser ies  of machines has been simulated on a computer, and the results plotted in fig- 
ure 14. 

The truncation e r ror  associated with this circuit may be calculated by solving the 
difference equations associated with this circuit. Calling the values of the sine and co- 
sine counters a t  the k iterative step "BS 
ference equations at  these two counters: 

(?, respectively, gives the dif-  
(k) 1 (k)'? and "BC 

BS(k) = BS(k- 1) + BC (k-1) Ax (18) 

'Eqs. (18) and (19) may be expressed more concisely as 

2 where V Sk is the second backward difference. 
this machine is approximated by the second backward difference. 

Therefore, the second derivative in 

19 
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Sine i--;---- 
r-=-=+- Cosine 

(a) Three stage. 

Sine pu 
Cosine + (b) Four stage. 

Ax 

(c) Five stage. 

Figure 14. -Output  of sine-cosine generator. 

If each clock pulse is taken as an iterative step, equations (18) and (19) may be 
written in matrix form as 

An approximate solution of equation (20) for large n in terms of the initialconditions 

may be written as 

s ( ~ )  = (1 + k2- sin 2-"k 

20 



= (1 + k2-2"-1) COS 2'nk ( 23) 

A quantitative evaluation of this circuit is complicated by the fact that it is used to 
generate two functions. One method that seems especially well suited for testing such a 
circuit is to plot one output function with respect to the other function rather than with 
respect to the independent variable. 
llcircle test" since the resultant figure for a perfect sine-cosine generator would be a 
circle. Moreover, it is possible to study the e r ro r s  due to round-off independent of those 
due to truncation by comparing the actual output to equation (20) output. For the sine- 
cosine generator a composite plot of the solution to the difference equation may be simply 
obtained by expressing equations (22) and (23) in polar coordinates, with the result that 

For the sine-cosine generator this is called the 

( 24) 
p = i + 2  -n- 1 e 

The difference between this equation and the circle represents the truncation e r ror  of the 
process and is seen to increase as the spiral of Archimedes. 
ure 14 are compared with the plot of equation (24) in figure 15 by this method. 

The results plotted in fig- 

0THE.R DIFFERENTIAL EQUATION MACHINES 
The hyperbolic-sine - hyperbolic-cosine machine is based on the differential equation 

y" = +y (25) 

Figure 15. - Sine-cosine circle test. 
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dx - 

(a) Basic design. 

--t 

sinh x 

A dx - 

cosh x 

L 

(b) Scaled design. 

Figure 16. - Hyperbolic-sine - hyperbolic-cosine generator. 

S i n h  
VI 
3 20 - 
3 CL 

c- 3 

3 
0 
.s 10 

0 10 20 30 40 
Input, pulses 

Figure 17. - Output of five-stage 
hyperbolic-sine - hyperbolic- 
cosine machine. 
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p-Sequence Hyperbolic sine x 
1 0 0 0 0  
0 1 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1  
1 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0  
0 0 1 0 0  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0  
1 0 0 0 0  0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1  
0 1 0 0 0  0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1  
1 0 0 0 0 
0 0 0 1 0  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0  
1 0 0 0 0  
0 1 0 0 0  
1 0 0 0 0  
0 0 1 0 0  
1 0  0 0 0 
0 1 0 0 0  
1 0 0 0 0  1111111111111111111111111111111111 
0 0 0 0 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
1 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0  
0 1 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0  
1 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0  
0 0 1 0  0 
1 0 0 0 0  1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0  
0 1 0 0 0  
1 0 0 0 0  
0 0 0 1 0  
1 0 0 0 0  
0 1 0 0 0  
1 0 0 0 0  
0 0 1 0 0  
1 0 0 0 0  
0 1 0 0 0  
1 0 0 0 0  
0 0 0 0 0  

Output of hyperbolic sine 

Hyperbolic cosine x 

Output of hyperbolic cosine 

Figure 18. - p-Sequence calculations for hyperbolic-sine - hyperbolic- 
cosine machine. 

u 
Figure 19. - Product machine. 

‘26 

Figure 20. - Square machine. 
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The schematic diagram for this machine is similar to the sine-cosine generator except 
that all outputs from the BRM’s are added to the counters. The basic circuit and the 
scaled circuit for this machine are shown in figure 16. It will be noted from this diagram 
that the values of A and B are defined by the equation set (26) as follows: 

By” = 2-2”A2By 

A = F  

5 5 - 1  

S F - 1  

The output for a hyperbolic-sine - hyperbolic-cosine generator is plotted in figure 17 for 
a five-stage system where B is chosen equal to 16. It is instructive to display the 
p-sequence calculation from which these results were obtained. These a re  shown in fig- 
ure 18. 

A series of other useful machines will be illustrated in this section. In particular, 
if  two pulse streams du and dv are given, the product uv may be generated by using 
the equation 

The basic design for this product machine is shown in figure 19. 

ure 20. This machine will generate the function 
The machine for generating the square of a function is shown schematically in fig- 

(28) 
2 y = x  

and is based on the equation 

y’ = a (29) 

The square machine is utilized as a subassembly in the machine for generating the 
reciprocal of a function; that is, 

y = l/x (30) 
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I I 

dx - dx - 
Y' 

Y" - 

Figure 21. - Reciprocal machine. 

dY ~ 

/ 4- - 

Y O )  Y'  - 
-2 

+ $0) 
2Y dY 

Y 

The basic design for this reciprocal machine based on the differential equation 

y' = -y2 

is shown in figure 21. 
The machine for generating the solution to the second-order differential 

y" + 25wny' + w; y = 0 

is shown in figure 22. 

the differential equation 
The tangent machine is shown schematically in figure 23. This machine is based on 

(33) 2 y ' = l + y  
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A similarity will be noted between this machine and that of the reciprocal machine. 
The square-root machine is based on the solution of the differential equation 

y' = 1/2y (34) 

It will be noted by this equation that it will form a subassembly of the reciprocal machine; 
that is, the differential equation 

is used in order to form the function 

The basic design of this machine is shown in figure 24. 

SYNTHESIS ( DIFFERENCE EQUATION) 

Consider the iterative process of successive substitution in the functional equation 

X(k+ 1) = q[x(k) 1 (37) 

where q(x) is chosen such that the fixed points of q(x) (i. e. ,  the points xi where 
xi = q(xi)) a re  the roots of f(x) = 0. One simple form of q(x) might be x - f(x), which 
leads to the iterative process 

dzldy 

2 dY 

Figure 24. - Square-root machine. 
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A more general form is x - g(x)f(x) which leads to the iterative process 

A restriction on g(x) in this latter form is that it has no zeros that a re  not zeros of f(x) 
and that the multiplicity of its poles at the zeros of f(x) be less  than the multiplicity of 
the zeros of f(x) at these points. With these restrictions, it can be readily seen that the 
iterative equation (eq. (39)) has fixed points at the zeros of f(x) (i. e. ,  x = x - 0). The 
function g(x) in equation (39) is chosew so that the process converges. 

equation of the form of equation (39). This method of synthesis is simply to generate a 
pulse stream equal to g(x)f(x) and feed it into a counter. 
lined as follows: 

Step 1. - Write the defining equation in the implicit form g(x)f(x) = 0. 
Step 2. - Assume a counter with the value of x and generate a pulse stream equal 

to g(x)f(x)p, where g(x)f(x) is the level setting of a BRM and p is the input to the BRM 
counter for converting this level setting into a pulse stream. 

Step 3. - Feed back the pulse stream generated in step 2 into the x counter. 
Step 4. - Assign an arbitrary constant to each variable represented in the machine. 
Step 5. - Write  constraint equations and calculate the scale factors such that these 

1 

4 

The basic equation of a counter immediately suggests a method for generating an 

This procedure may be out- 

equations are satisfied. 

DIVIDE ALGORITHM 

The machine for generating x such that 

1 may be designed as follows: 
Step 1. - One way in which equation (40) may be rewritten to put it into the desired -____ 

I' form is 

x b - a = O  (4 1) 

Step 2. - By assuming a counter value representing x, a pulse stream equal to 
xb - a may be generated (see fig. 25(a)). 
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X - 

PXb 

(a) Basic design. 

Aa 

2-'pAa 

> c x  

2-2n pBbCx 

~ 

(b) Scaled design. 

Figure 25. - Divide algorithm. 

Step 3. - The pulse stream generated in step 2 is fed into the counter representing x. 
Step 4. - The schematic of figure 25(a) is redrawn in figure 25(b), and each variable 

Step 5. - The constraint equations may be written directly from figure 25(b), in which 
is assigned an arbitrary constant. 

an iteration is taken at every clock pulse: 

1 CIXmax( 5 2n - 1 

t 

Suppose for the sake of argument that 

28 



Equation (44) implies that 

< 1 2-n xmax - 

5 1 - 2-n amax 

bmax 5 1 - 2-n 

and equation (43) may be rewritten as 
( 

If equation (46) converges to a fixed point x, 

x = x - 2'nbx + 2-"a 

If "(k) is the iterative truncation e r ror  at iterative step k, that is, 

then from equations (46) and (47) 

(0) as This may be written in terms of 2 

This process will converge i f  

lim " (k) = 0 
k+m 

which implies the condition 
9 

11 - 2-"bl < 1 

(4 5) 

(47) 

for convergence. Therefore, by equation (52) the process is seen to converge. If the 
sign of the outputs of the BRM are reversed, however, such as shown in figure 26, an 
analysis will show that the process will not converge. 
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X 

Figure 26. - Nonconvergent divide algorithm. 

Figure 27. - Iterative-process square-root machine. 

OTHER DIFFERENCE-EQUATION MACHINES 

The square-root machine, that is, 

x =  f i  (53) 

may be designed by finding the zeros of the equation 

x 2 - a = 0  (54) 

This machine is shown schematically in figure 27. If the scale factor of x and a are 
both taken as 2", an analysis similar to that of the divide algorithm shows that the itera- 
tive process 

i 

I 

x(k+l) = x(k) - 2-%tk) + 2-"a (55) 

is generated by the machine. 
written as 

30 

The iteration truncation e r ror  for this equation may be 
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d(k+l) ={I - 2-"[x + x  (56) 

where x is the solution. A sufficient condition for this process to converge is that 

(57) 

Since * 

f, 
< 1  xmax 

with the scale factor chosen, the process converges; however, had 

(59) - 2-"[a - x 2 1 
x(k+l) = x(k) (k) 

been chosen as the iterative process, the process would not converge. 

ticular, if 
A product machine may also be designed by using this method of synthesis. In par- 

x = ab (60) 

the product may be found by the iterative process 

This machine is shown in figure 28. If the scale factors for x, a, and b are all taken 
as 9, the machine generates the iterative process 

Figure 28. - Iterative-process product machine. 
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The iterative truncation e r ror  for this machine in terms of S(o)  is 

SYNTHESIS (REGENERATIVE CIRCUIT) 

Consider the schematic diagram shown in figure 29. The value of K is bounded such 
Y that 

The output equation for this circuit may be written as 

dz = K(dx + dz) 

As K - 1 in equation (65), the ratio dz/dx - “0; however, equation (64) fixes an upper 
bound on this ratio such that 

- Therefore, by using this regenerative circuit, the BRM may act as an amplifier. If large 

kU 
Figure 29. - Regenerative circuit .  

6 

4 
c 0 
.d 

m U 

.- 

E 2 - 
n 
E < 

0 

-2 
-1. 2 -. 8 

I 

-.I 

.8 I -  
BRM setting 

Figure 30. - Amplification of regeneration circuit .  

amplifications a r e  to be considered, however, 
other factors must be taken into account. In par- 
ticular, suppose a dx pulse arrives at the BRM and 
this generates a dz pulse. The dz pulse is de- 
layed by a gatedpulse generator and is fedback to 
the BRM. This in turn may generate another dz 
pulse. This process may be continued depending 
on the value of K; however, each time a dz pulse 
is recirculated, the pulse shape deteriorates. 
For example, if leading edge logic is used, ihe 
rise time of each pulse will be increased until 
the dz pulse is not sharp enough to be utilized. 
Moreover, enough time must be allowed between 
the dx pulses to permit the maximum number of 
dz pulses. The maximum value of K usually 
utilized in these circuits will in general be less 
than that permitted by equation (64). 

1 

r 
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This point is illustrated by the plot of equation (65) in figure 30. If -1 < K < 1/2, at 
most, 1 pulse will be fed back with each input pulse. If 1/2 < K < 1, more than1  pulse 
will be fed back with each input pulse. Therefore, by fixing the upper value of K, the 
maximum number of feedback pulses may be restricted. 

ferential equation. In this section, however, the differential equation will involve the 
highest order derivative on both sides of the equation; that is, 

The method of synthesis in this section is similar to that used in the synthesis by dif- 

dmy = f(dmy,. . . ,y ,x  \ 
In general, the equation is written in this form when the highest order derivative cannot 
be isolated. In particular, if the highest order derivative has a nonconstant coefficient, 
it may be written as equation (67) by adding and subtracting a constant from this coeffi- 
cient (see refs. 8 and 9). The design of the circuit based on equation (67) implies the use 
of the regenerative circuit, since the generation of the highest order derivative involves 
itself. 

SQUARE- ROOT MACHINE 

Consider the generation of the square root 

(a) Basic design. 

. A. I I 

L 
I 

(b) Scaled design. 

Figure 31. - Regenerative-circuit square-root machine. 
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from the equation 

y - =  dy 1/2 
dx 

(69) 

The first step of this technique is to write equation (69) as 

(y - c + C) - dY - - 112 
dx 

and then isolate the highest order derivative as shown in the following equation: t 

The basic and scaled circuit for generating equation (71) is shown in figures 31(a) and (b), 
respectively. 
tial equation gives the constraint equations: 

Following the same technique used to derive a machine based on a differen- 

(7 2) -n 2 A dy = B dx + 2 A (C - y)dy 

(defining equation for the machine) 

A I C - y l m a x s P - l  (7 3) 

(the counter limiting equation). 
puted by 

From these equations, the scale factors may be com- 

I A =  P / C  

B =  F1/c2 J 
where C is chosen such that it satisfies the inequality 

I 

Figure 32. - Scaled diagram for four-stage square-root machine. 

(74) 
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Based on this design, figure 32 gives the computed scales and circuit for a four-stage 
regenerative-circuit square-root machine. The output of this machine together with that 
of the desired output is shown in figure 33. 

OTHER REGENERATIVE CIRCUIT MACHINES 

a The natural-logarithm machine 

y = h x  

may be designed as a regenerative circuit by the equation 

16 

a 

3.0 

2.5 

2.0 

1.5 

1.0 
0 2 4 

X 

b 1 8 

I I I I I I I I  
0 2 4 6 8 10 1 2 1 4  

Pulses 

Figure 33. -Output  of regenerative- 
c i rcu i t  square-root machine. 

dy = * + (1 - dy 
C 

(77) 

The circuit for generating this function is shown i n  
figure 34. 

The quotient machine 

z = x/y (7 8) 

may be designed as a regenerative circuit by: the 
equation 

(79) 
1 
C 

dz = -[(y + C)dz + z dy - dx] 

The schematic circuit for this function is shown i n  
figure 35. 

I I 

Figure 34. - Regenerative-circuit logarithm machine. 
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Figure 35. - Regenerative-circuit quotient machine. 

a0 
f (x) - 

PIECEWISE POLYNOMIAL MACHINES 

dx - 

When a function to be generated is available only as empirical data (e. g., such as in 
sampled data systems), the design must be based on generating an approximation function. 
Various classes of approximation functions and techniques for obtaining approximations 
have received considerable attention in the literature (e. g. , see ref. 10). A particularly 
convenient form for approximating a continuous function is that of a polynomial. The gen- 
eral polynomial 

a 1  
a2 

6 

( 80) amxm "2 2 "m-1 xm-1.. . . +-x + a x + a  1 0 f(x) = - -I- 
m! (m - l)! 2! 

may be generated by the circuit shown in figure 36. However, i t  is usually the case that 
all the data a r e  not immediately available for generating the function over its entire 
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range, or  if  it is available, the polynomial needed to meet the accuracy requirements is 
of excessively high degree. In these applications the requirements of the problem may be 
met by using a ser ies  of relatively low degree polynomials, where each polynomialis used 
to fit data only in a restricted range. Such machines a r e  called piecewise polynomial 
machines. 

Because of their widespread use in applications (see refs. 4, and 11 to 13) and also 
because they can be realized with relatively simple circuits, this section is devoted ex- 
clusively to describing a ser ies  of machines for generating piecewise polynomials arising 
from finite-difference techniques. These machines a re  grouped into two broad categories 
based on applications, that is, interpolation or extrapolation. Each machine of this ser-  
ies will generate a low order polynomial fitted to data available at equal intervals of the 
argument. In passing from one segment into the next new data are introduced. 
of the data in each case is simply generated from the empirical data. 

difference notation will be used. 
ble, where the value of the function is obtained; that is, 

,* 
1 

1,) 

The form 

In order to facilitate the description of the machines in the next two sections, ordinary 
In particular, on is the value of the independent varia- 

f(o ) = fn n 
2 The quantity 6o represents the spacing of the independent variable, and A,, An,  . . . ,A: 

are the successive differences that may be obtained from lower order differences as fol- 
lows: 

A," = An+l - An 
7 

m-1 m-1 A:= - J 
In formulating the approximation formula that passes through the given points, it is 

convenient to display these various differences in tabular form as shown in figure 37(a). 
Fro& this difference table, alternate forms of the approximation formula may be derived 
dependent on the differences that are utilized, that is, on the path through the difference 
table. The paths of some of these formulas are shown in figure 37(b). The form of the 
formula that will be utilized in the following discussion will be such that, in each case, 
the value of the variable x will vary from 0 to 1 in the interval of interest. 

4 
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f-2 / Gregory-Newton backward formula 
A-2 2/ 

f-1 ,A-2 A 3-2 

3 A h A 2  A- -1 

f 1 A1 -Ai, 
f2 4 

A2 

Newton-Sterling formula 
Newton-Bessel formula 

Gregory-Newton forward formula 

'3 
(a) Direct-path difference formulas. 

Newton-Gauss backward formula 

f0 c Newton-Gauss forward formula 

A?, 
(b) Broken-path difference formulas. 

no 

I p2 

c 

X 
Figure 38. - Scheme for piecewise 

l inear interpolation. 

Figure 37. - Difference table and paths of difference formulas. 

INTER POLATION 

A piecewise linear interpolator can be obtained by passing a linear polynomial 
through successive pairs of points of the function to be generated. This scheme is illus- 
trated in figure 38. A linear polynomial is generated that passes through the points Po 
and P1. At the point Ply the point P2 is added to the scheme and a linear polynomial is 
generated that passes through the points P1 and P2. This procedure may be expressed 
in terms of ordinary differences by the Gregory-Newton interpolation formula; that is, 

f(on + x6w) = fn + Anx 

The first derivative of this formula is 

6wf'(wn + x6w) = A, (84) 

This interpolation formula may be generated by the linear polynomial generator shown in 
figure 39(a). 

The corresponding equation and its first derivative for the next interpolation interval 
is given by 
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(a) First difference input data. 

. . . fne ,  fnt2 - f n t l  

60f '(wn+l + X ~ W )  = An+l (86) 

At the end of the first interval the values of the function and its derivative given by 
equations (83) and (84) are. 

n+l (87) 

(88) 

f(On + 60) = f + An = f n 

6wf'(on + 60) = An 

The corresponding values of these two quantities needed at the start of the next interval 
are given by equations (85) and (86) and are 

By direct computation it may be verified that, in order to proceed from one interval to 

BRM, and the output (i. e. , the end point of the interpolation interval) need not be modi- 
fied. Since adders have been excluded as basic design elements, however, the same re- 
sult may be attained by transferring An+l as the setting of the BRM (since An+l = 

linear interpolation of a function by transferring successive first difference as settings 
for the BRM in order to proceed from one interval to the next. 

the next, the quantity An 2 (which is An+l - An) needs to be added to the setting of the 

An + An). 2 Consequently, the circuit shown in figure 39(a) may be used for piecewise 
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The circuit just derived is well suited for an applica- 
tion in which an incremental encoder is used to generate 
the input data. If an absolute encoder is used to generate 
the primary data, the preceding circuit may be adapted for 
this input by using the defining equation for first  differ- 

p3 

X 

ences, that is, equation (82). 
figure 39(b). As in the previous case, only one new piece 

This circuit is shown in 

Figure 40. - Scheme for piecewise qua- 
dratic interpolation (back interval). 

of information must be transferred into the circuit in order 
to proceed from one interpolation interval to the next. In 

this case, however, before the new information, that is, fn+2, is transferred as the set- 
ting of the lower BRM, the value of the lower BRM, that is, fn+l, must be transferred to 
the upper one. 

Two piecewise quadratic interpolators will be derived. The scheme for the f i rs t  one, 
which will be called the back interval quadratic interpolator, is illustrated in figure 40. 
A quadratic polynomial is generated that passes through points Po, P1, and PZ This 
polynomial is used to generate the curve between points Po and P1. The point P3 is 
then added to the scheme and a quadratic polynomial is derived that passes through the 
points P1, P2, and P3. This polynomial is then used to generate the curve between P1 
and Pa. 

This procedure may also be conveniently expressed by the Gregory-Newton quadratic 
interpolation formula; that is, 

* 

f(o + x6o) = fn + Anx + x(x - 
2 A: n 

The successive derivatives for this formula are 

(93) 
2 2 (60) f"(wn + X ~ O )  = An 

The corresponding equation and its derivatives for the next interpolation interval are 

2 6of '(wn+l + xbw) = An+l - 2 A 2  n+l + A n + ~ x  (95) 

( 6 ~ ) 2 f " ( o , + ~  + x6w) = An+l 2 
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I Consequently, the corrections to be added to the second derivative, the first deriva- p 
, 

k tive, and the function at the end of the interval in order to proceed to the next interval are 
-&  A3 and 0, respectively. From this formulation, however, addition is required An, 2 n’ 

in order to proceed from one interval into the next. A formulation of this process that 
leads to the elimination of the explicit adder is to splinter the polynomial given by equa- 
tion (91) into the following two polynomials: 

and 

where 

and 

2 
f (w + X ~ O )  = fn  + Anx + -X An 2 

2 a n  

f (w +x6w)=--x  4 
2 b n  

f(wn + x6w) = fa(wn + x6w) + fb(wn + x6w) 

The first and second derivatives of equation (97) are 

( 6w)fk(wn + x60) = An + A S  

( 6 ~ )  2 f g ( w n  + x ~ w )  = An 2 

The corresponding splintering of equation (94) yields 

2 
‘n+l+ An+lx (6w)f;(wn+l + x 6 w )  = 

(6~)2f:(w~+~ + X6w) = An+l 2 

(97) 

(99) 

41  



(a) Second difference input data. \ I  

(b) First difference input data. 

I 

(c) Function values input data. 

Figure 41. -Machines for piecewise quadratic interpolation (back interval). 

Consequently, no correction needs to be added to the first  derivative in generating 
the function fa. Equations (97) and (98) may then be used to design the circuit shown in 
figure 4l(a). It will be noted that, in order to proceed from one interval to the next, only 
new second difference data need be transferred to set the levels of the leftmost BRM. 

Based on the defining equation for second differences, that is, equation (82), the 
machines shown in figures 41(b) and (c) may be obtained directly from the machine shown 
in figure 41(a). In these machines, previous first  differences and values of the function 
are transferred directly from the lower BRM's to the upper ones before a new first dif- 
ference and a value of the function, respectively, a r e  transferred into the lower one in 
order to proceed from one interval into the next. 
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X 

Figure 42. - Scheme for piecewise qua- 
dratic interpolation ( f ront  interval). 

... A ~ + ~ , A ;  - 4 - 1  

(b) First difference input data. 

I I 

(c) Function values input data. 

Figure 43. -Machines for piecewise quadratic interpolation ( f ront  interval). 
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The scheme for piecewise front interval - -  ~- quadratic interpolation illustrated in fig- 
ure 42 may be derived by use of the Newton-Gauss interpolation formula given in the fol- 
lowing equation: 

x(x + 1) 2 
‘n- 1 f(wn + x60) = fn  + x An + 

2 

If equation (105) is implemented directly, the f i rs t  derivative and second derivative 
must be corrected by adding 3 An-1 and Anm1, respectively, to these quantities in order 
to proceed from one interval to the next. The explicit need for an adder may be avoided 
in a manner similar to that used in the previous discussion by splintering equation (105) 
into the following pair of equations: 

1 3  3 

1 2 2  + - x Anm1 - 2  fa(”, + x60) = fn  + x An 

Based on this pair of equations, the circuit shown in figure 43(a) may be derived di- 
rectly. The machines shown in figures 43(b) and (c) are adapted from the circuit shown 
in figure 43(a) by using the definition of the second difference given in equation (82). 

A cubic interpolator may be obtained from the Newton-Gauss interpolation; that is, 

1 2 1 3 f(on + x 6 W )  = fn + x An + 3 X(X - 1)Anml + X(X - l)(x + l)An-l  

In this case, however, the discussion will be limited to using this formula for central in- 
terval interpolation only. The points Po, P1, 
P2, and P3 are  used to generate an interpolation formula for interpolating between P1 

This scheme is illustrated in figure 44. 

I. 

X 

Figure 44. - Scheme for piecewise 
cubic interpolation (central in- 
te rva I ). 

and P2. The point P4 is then added to the scheme and the 
points P1, P , P3, and P4 are used to interpolate between 
points P2 and P3. 

Equation (108) may be applied directly to yield a central 
interval cubic interpolator. In this case, however, the third, 
second, and first  derivatives must be corrected by adding 

respectively, to these quantities in ordei 
to proceed from one interval to the next. 

A configuration may be obtained that conforms with thede- 
sign practice of not using an adder by splintering equation (108) 

2 

4 
An-l ,  0,  and s An+ 
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dX - 
fn 

A n - 1 6 2  2 n-1 

4 - 1  
. . . A:+~, A: 

(a) Third difference input data. 

- 
(b) Second difference input data. 

Figure 45. -Machines for piecewise cubic interpolation (central interval). 

into the following pair of equations: 

fa(wn + X ~ W )  = fn + x 

Based on this pair of equations, a circuit may be obtained such that the function, its 
f i rs t  derivative, and its second derivative need not be changed in order to proceed from 
one interval to the next. This circuit is shown in figure 45(a). The circuits presented 

difference. 
P in figures 45(b) to (d) a r e  modifications of this circuit based on the definition of the third 

EXTRAPOLATION 

Extrapolation presents an added problem in that the output of the machine must also 
be corrected in order to proceed from one interval to the next. This is illustrated in 
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2dx  & 
4 

fn 

2 
An-1 

(c i  First difference input data. 

\ 

(d) Function values input data. 

Figure 45. - Concluded. 

X 

Figure 46. - Scheme for piece- 
wise l inear extrapolation. 

Figure 47. -Machine for piecewise l inear extrapolator. 
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figure 46 for linear extrapolation. A linear polynomial through Po and P1 is used to 
extrapolate the values from P1 to Pf. The point P2 is then added to the scheme, and 
a linear polynomial through P1 and P is used to extrapolate the next interval. The 
predicted value P2 and the new value P2 can be expected to be different. 
the output must be corrected for this new value Pa. In order to avoid putting a jump in 
the output function at this point, the scheme that will be employed is to put in the cor- 
rection linearly over the entire next interval. This scheme (as well as that of quadratic 
extrapolation described next) is closely related to the Porter-Stoneman digital filters 
(see ref. 14) and may be extended accordingly. 

linear extrapolation machine; that is, 

* 2 
Consequently, 

.. 
b 

1, 

t 

The Gregory-Newton backward finite difference formula may be used to design the 

f(wn + x 6 ~ )  = fn  + An 1~ 

The corresponding formula for extrapolating the next interval is 

f(wn+l + x6w) = fn+l + Anx 

If these formulas are applied directly, the circuit must be corrected at the end of the 
2 interval by adding An - to both the function and its first derivative in order to proceed 

into the next interval. This, however, would cause a jump in the output function. This 
jump may be avoided by putting the correction term in the output in a linear manner over 
the entire next interval. The resulting polynomial has the property that i ts  initial value 
corresponds to the end point of equation (lll), and i ts  final value corresponds to the end 
point of equation (112). A polynomial that satisfied these constraints may be written as 
follows : 

The second difference in equation (113) may be eliminated by using the defining equa- 
tion given by equation (82). This substitution yields the following equivalent equation: 

f(wn+l + x ~ W )  = (fn + An-l) + (2An - A n- 1 )X (1 14) 

Equation (114) may be implemented to yield the linear extrapolator shown in figure 47. 

tion through points Po, P1, and P2 is used to extrapolate the data to the point P3. The 
point P3 is then added to the scheme and can, in general, be expected to be different 
from P;. The quadratic equation through the points P1, P2, and P3 is then used to 

The scheme for quadratic extrapolation is shown in figure 48. The quadratic equa- * 
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extrapolate to the point Pl. In order to avoid putting a 
jump in the output when new information is added to the 
scheme, the correction may be put into the output in a 
linear manner over the entire next interval in the same 
manner as that employed for linear extrapolation. 

p; 

/ px& /' p; 

PI ///' 
/O/ 

/ 

Po /' The Gregory-Newton backward difference formula 
d 

X 

forms the basis of the quadratic extrapolation. This 
formula may be written as follows: 

Figure 48. - Scheme for piecewise qua- 

(115) dratic extrapolation. x(x + 1) 2 
'n- 2 f(un + x6w) = fn + x An-l + 

2 

The corresponding formula for the next interval is 

x(x + 1) 
An- 1 f(wn+l + x60) = fn+l + x An + 

2 
If equations (115) and (116) are implemented directly, the quantities An 3 2, 3An-2/2, 3 - 

and 
respectively, in order to proceed from one interval to the other. A s  was indicated ear- 
lier, the jump in the output function can be avoided by putting in the correction over the 
entire next interval. A polynomial that satisfies these constraints (i. e . ,  has the end of 
eq. (115) as its initial point and the end of eq. (116) as its final point) may be written as 
follows: 

must be added to the output function, its derivative, and its second derivative, 

2 2 

2 2 
(117) f(wn+l + x6w) = f + An-l + Ane2 2 + (, An + - An-1 +.:-a). + - An- l X 2  

n 

Substituting the difference relation given by equation (82) into equation (117) yields 

Equation (118) may be splintered into the two equations 

2 

2 
fa(wn+l + x60) = fn + An- + AP2 2 + Anmlx + - 'n-1 x2 

fb(Wn+l + X6W) = 

to yield the circuit shown in figure 49. 
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I 

dx ---h 

I 

Figure 49. - Machine for piecewise quadratic extrapolator. 

The circuits shown in figures 47 and 49 may be readily expanded by use of finite dif-  
ference relations (as was done for interpolators) to yield circuits that accept functional 
values and first differences as the primary source of data. 

I [ 
i 

CONCLUDING REMARKS 

A handful of circuits has been reported in the literature that were designed to meet 
the needs of special purpose digital computer problems arising from real time applica- 
tions. The organization of these circuits is to utilize simple counting techniques as the 
basis for computing. 
for such special purpose applications. 
this study with the objective of (1) *?explaining?* the circuits and (2) generalizing the de- 
sign philosophy such that new circuits may be admitted with the same organization. In 
order to be specific the principal design elements were limited to three fundamental units. 
The elements a r e  (1) the binary rate multiplier, which is a means of scaling down a pulse 
stream to some specified fraction, (2) the counter, and (3) the anticoincidence circuit, 
which is a means of separating pulses arriving at a counter simultaneously. 

scribe the machines. Operational techniques a r e  then used as the method of synthesis. 
In particular, a counter is utilized to represent a first-order difference equation and a 
counter in cascade with a BRM is utilized to represent approximate integration. 
putational error ,  that is, rounding-off and truncation errors ,  introduced into the ma- 
chines as a result of treating the principal design elements as operational units are iden- 
tified. Having identified these two sources of e r rors  permitted us to obtain better re- 
sults experimentally by two methods: (1) increasing the number of stages and (2) changing 
the round-off error  by changing the starting value of the BRM counter. 

The method of synthesis is presented in three parts: (1) expressing the function to be 
generated as a differential equation, (2) expressing it as the fixed point of an iterative 
process, and (3) expressing it in terms of a regenerative circuit that is presented. 

This results in a simplicity of hardware that make them attractive 
The design of these circuits has been examined in 

These design elements a re  represented as operational units that may be used to de- 

The com- 

The 
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method of synthesis is explicitly stated and is satisfactory in that all known circuits may 
be directly obtained from it. A wide variety of other functions is also obtained using 
these synthesis techniques. Many of these examples a re  illustrated, and in some cases 

‘actual experimental results were obtained and discussed with the machine. 
A series of machines is presented for interpolation and extrapolation of a function 

that is available only as empirical data. In particular, the function is generated over its 
entire range by a sequence of low order polynomials. Finite-difference techniques a re  
used to describe the polynomials. The order of the polynomial is limited to a cubic for 
interpolation, and a quadratic for extrapolation since these seem to be the important 
cases in practice. Nevertheless, these techniques can be easily extended to include 
higher order polynomials. 

Lewis Research Center , 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 21, 1965. 
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